4.8 Article

Deep embrittlement and complete rupture of the lithosphere during the M-w 8.2 Tehuantepec earthquake

Journal

NATURE GEOSCIENCE
Volume 11, Issue 12, Pages 955-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41561-018-0229-y

Keywords

-

Funding

  1. NSF [EAR-1338091]
  2. CONACyT [253760]
  3. UNAM-PAPIIT [IN104213, IN109315-3]
  4. Japanese government through the programme Science and Technology Research Partnership for Sustainable Development (SATREPS) via the Japan International Cooperation Agency (JICA)
  5. Japan Science and Technology Agency (JST) [15543611]
  6. Romanian Ministry of National Education and Scientific Research, RDI Program for Space Technology and Advanced Research-STAR [513]

Ask authors/readers for more resources

Subduction zones, where two tectonic plates converge, are generally dominated by large thrust earthquakes. Nonetheless, normal faulting from extensional stresses can occur as well. Rare large events of this kind in the instrumental record have typically nucleated in and ruptured the top half of old and cold lithosphere that is in a state of extension driven by flexure from plate bending. Such earthquakes are limited to regions of the subducting slab cooler than 650 degrees C and can be highly tsunamigenic, producing tsunamis similar in amplitude to those observed during large megathrust events. Here, we show from analyses of regional geophysical observations that normal faulting during the moment magnitude M(w)8.2 Tehuantepec earthquake ruptured the entire Cocos slab beneath the megathrust region. We find that the faulting reactivated a bend-fault fabric and ruptured to a depth well below the predicted brittle-ductile transition for the Cocos slab, including regions where temperature is expected to exceed 1,000 degrees C. Our findings suggest that young oceanic lithosphere is brittle to greater depths than previously assumed and that rupture is facilitated by wholesale deviatoric tension in the subducted slab, possibly due to fluid infiltration. We conclude that lithosphere can sustain brittle behaviour and fail in an earthquake at greater temperatures and ages than previously considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available