4.8 Article

The energy-transfer-enabled biocompatible disulfide-ene reaction

Journal

NATURE CHEMISTRY
Volume 10, Issue 9, Pages 981-988

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41557-018-0102-z

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [RE2796/6-1]
  2. Fonds der Chemischen Industrie

Ask authors/readers for more resources

Sulfur-containing molecules participate in many essential biological processes. Of utmost importance is the methylthioether moiety, present in the proteinogenic amino acid methionine and installed in tRNA by radical-S-adenosylmethionine methylthio-transferases. Although the thiol-ene reaction for carbon-sulfur bond formation has found widespread applications in materials or medicinal science, a biocompatible chemo- and regioselective hydrothiolation of unactivated alkenes and alkynes remains elusive. Here, we describe the design of a general chemoselective anti-Markovnikov hydroalkyl/aryl thiolation of alkenes and alkynes-also allowing the biologically important hydromethylthiolation-by triplet-triplet energy transfer activation of disulfides. This fast disulfide-ene reaction shows extraordinary functional group tolerance and biocompatibility. Transient absorption spectroscopy was used to study the sensitization process in detail. The hereby gained mechanistic insights were successfully employed for optimization of the catalytic system. This photosensitized transformation should stimulate bioimaging applications and carbon-sulfur bond-forming late-stage functionalization chemistry, especially in the context of metabolic labelling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available