4.8 Article

Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding

Journal

NATURE CHEMISTRY
Volume 6, Issue 4, Pages 343-351

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NCHEM.1871

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/H000925, EP/J008834]
  2. European Union [IEF-253369]
  3. EPSRC [EP/F067496]
  4. EPSRC [EP/H000925/1, EP/J008834/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/H000925/1, EP/J008834/1] Funding Source: researchfish

Ask authors/readers for more resources

Porous materials are attractive for separation and catalysis-these applications rely on selective interactions between host materials and guests. In metal-organic frameworks (MOFs), these interactions can be controlled through a flexible structural response to the presence of guests. Here we report a MOF that consists of glycyl-serine dipeptides coordinated to metal centres, and has a structure that evolves from a solvated porous state to a desolvated non-porous state as a result of ordered cooperative, displacive and conformational changes of the peptide. This behaviour is driven by hydrogen bonding that involves the side-chain hydroxyl groups of the serine. A similar cooperative closure (reminiscent of the folding of proteins) is also displayed with multipeptide solid solutions. For these, the combination of different sequences of amino acids controls the framework's response to the presence of guests in a nonlinear way. This functional control can be compared to the effect of single-point mutations in proteins, in which exchange of single amino acids can radically alter structure and function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available