4.8 Article

Large-scale screening of hypothetical metal-organic frameworks

Journal

NATURE CHEMISTRY
Volume 4, Issue 2, Pages 83-89

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NCHEM.1192

Keywords

-

Funding

  1. Defense Threat Reduction Agency [HDTRA1-09-1-0007]
  2. US Deptartment of Energy, Office of Science [DE-FG02-08ER15967]
  3. Northwestern Nanoscale Science and Engineering Center
  4. Initiative for Sustainability and Energy at Northwestern
  5. Northwestern University International Institute for Nanotechnology

Ask authors/readers for more resources

Metal-organic frameworks (MOFs) are porous materials constructed from modular molecular building blocks, typically metal clusters and organic linkers. These can, in principle, be assembled to form an almost unlimited number of MOFs, yet materials reported to date represent only a tiny fraction of the possible combinations. Here, we demonstrate a computational approach to generate all conceivable MOFs from a given chemical library of building blocks (based on the structures of known MOFs) and rapidly screen them to find the best candidates for a specific application. From a library of 102 building blocks we generated 137,953 hypothetical MOFs and for each one calculated the pore-size distribution, surface area and methane-storage capacity. We identified over 300 MOFs with a predicted methane-storage capacity better than that of any known material, and this approach also revealed structure-property relationships. Methyl-functionalized MOFs were frequently top performers, so we selected one such promising MOF and experimentally confirmed its predicted capacity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available