4.8 Article

Combining acid-base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase

Journal

NATURE CHEMISTRY
Volume 4, Issue 1, Pages 26-30

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nchem.1180

Keywords

-

Funding

  1. National Institutes of Health

Ask authors/readers for more resources

Some enzymes function by coupling substrate turnover with electron transfer from a redox cofactor such as ferredoxin. In the [FeFe]-hydrogenases, nature's fastest catalysts for the production and oxidation of H-2, the one-electron redox by a ferredoxin complements the one-electron redox by the diiron active site. In this Article, we replicate the function of the ferredoxins with the redox-active ligand Cp*Fe(C5Me4CH2PEt2) (FcP*). FcP* oxidizes at mild potentials, in contrast to most ferrocene-based ligands, which suggests that it might be a useful mimic of ferredoxin cofactors. The specific model is Fe-2[(SCH2)(2)NBn](CO)(3)(FcP*)(dppv) (1), which contains the three functional components of the active site: a reactive diiron centre, an amine as a proton relay and, for the first time, a one-electron redox module. By virtue of the synthetic redox cofactor, [1](2+) exhibits unique reactivity towards hydrogen and CO. In the presence of excess oxidant and base, H-2 oxidation by [1](2+) is catalytic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available