4.8 Article

A synthetic molecular pentafoil knot

Journal

NATURE CHEMISTRY
Volume 4, Issue 1, Pages 15-20

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nchem.1193

Keywords

-

Funding

  1. EPSRC
  2. Academy of Finland [212588, 218325]
  3. Engineering and Physical Sciences Research Council [EP/H021620/1] Funding Source: researchfish
  4. EPSRC [EP/H021620/1] Funding Source: UKRI

Ask authors/readers for more resources

Knots are being discovered with increasing frequency in both biological and synthetic macromolecules and have been fundamental topological targets for chemical synthesis for the past two decades. Here, we report on the synthesis of the most complex non-DNA molecular knot prepared to date: the self-assembly of five bis-aldehyde and five bis-amine building blocks about five metal cations and one chloride anion to form a 160-atom-loop molecular pentafoil knot (five crossing points). The structure and topology of the knot is established by NMR spectroscopy, mass spectrometry and X-ray crystallography, revealing a symmetrical closed-loop double helicate with the chloride anion held at the centre of the pentafoil knot by ten CH center dot center dot center dot Cl- hydrogen bonds. The one-pot self-assembly reaction features an exceptional number of different design elements-some well precedented and others less well known within the context of directing the formation of (supra)molecular species. We anticipate that the strategies and tactics used here can be applied to the rational synthesis of other higher-order interlocked molecular architectures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available