4.8 Article

Visible light photocatalysis as a greener approach to photochemical synthesis

Journal

NATURE CHEMISTRY
Volume 2, Issue 7, Pages 527-532

Publisher

NATURE RESEARCH
DOI: 10.1038/NCHEM.687

Keywords

-

Funding

  1. Research Corporation Cottrell Scholar Award
  2. Beckman Young Investigator Award
  3. Sloan Foundation

Ask authors/readers for more resources

Light can be considered an ideal reagent for environmentally friendly, 'green' chemical synthesis; unlike many conventional reagents, light is non-toxic, generates no waste, and can be obtained from renewable sources. Nevertheless, the need for high-energy ultraviolet radiation in most organic photochemical processes has limited both the practicality and environmental benefits of photochemical synthesis on industrially relevant scales. This Perspective describes recent approaches to the use of metal polypyridyl photocatalysts in synthetic organic transformations. Given the remarkable photophysical properties of these complexes, these new transformations, which use Ru(bpy)(3)(2+) and related photocatalysts, can be conducted using almost any source of visible light, including both store-bought fluorescent light bulbs and ambient sunlight. Transition metal photocatalysis thus represents a promising strategy towards the development of practical, scalable industrial processes with great environmental benefits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available