4.8 Article

Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture

Journal

NATURE CHEMISTRY
Volume 2, Issue 4, Pages 308-312

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NCHEM.581

Keywords

-

Funding

  1. EPSRC
  2. BP Chemicals
  3. WestCHEM
  4. Leverhulme Trust
  5. University of Glasgow

Ask authors/readers for more resources

The convergent assembly of metal-organic frameworks has enabled the design of porous materials using a structural building unit approach, but functional systems incorporating pre-assembled structural building unit 'pore' openings are rare. Here, we show that the face-directed assembly of a ring-shaped macrocyclic polyoxometalate structural building unit, {P8W48O184}(40-) with an integrated 1-nm pore as an 'aperture synthon', with manganese linkers yields a vast three-dimensional extended framework architecture based on a truncated cuboctahedron. The 1-nm-diameter entrance pores of the {P8W48O184}(40-) structural building unit lead to approximately spherical 7.24-nm(3) cavities containing exchangeable alkali-metal cations that can be replaced by transition-metal ions through a cation exchange process. Control over this process can be exerted by either electrochemically switching the overall framework charge by manipulating the oxidation state of the manganese linker ions, or by physically gating the pores with large organic cations, thus demonstrating how metal-organic framework-like structures with integrated pores and new physical properties can be assembled.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available