4.8 Article

Dianionic species with a bond consisting of two pentacoordinated silicon atoms

Journal

NATURE CHEMISTRY
Volume 2, Issue 2, Pages 112-116

Publisher

NATURE PORTFOLIO
DOI: 10.1038/NCHEM.513

Keywords

-

Funding

  1. Yamada Science Foundation
  2. The Japan Securities Scholarship Foundation
  3. Global COE program, Scientific Research on Priority Area, Creative Scientific Research
  4. Next Generation Super Computing

Ask authors/readers for more resources

Silicon can form bonds to other tetracoordinated silicon atoms and these bonds form the framework of many organosilicon compounds and crystalline silicon. Silicon can also form a pentacoordinated anionic structure-a so-called 'silicate'. No compounds containing a direct bond between two silicate moieties-'disilicates' where two silicate structures are combined in one species-have been reported because of the electronic repulsion between the anionic halves and difficulty preventing the release of anions. Here we report the synthesis of thermally stable and isolable disilicates by the reductive coupling reaction of a silane bearing two electron-withdrawing bidentate ligands. Two pentacoordinated silicons, positively charged despite the formal negative charge, constitute a single sigma-bond and bind eight negatively charged atoms. They can be reversibly protonated, cleaving two Si-O bonds, to afford a tetracoordinated disilane. Their unique electronic properties could be promising for the construction of functional materials with silicon wire made up of silicate chains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available