4.8 Article

Phage-encoded combinatorial chemical libraries based on bicyclic peptides

Journal

NATURE CHEMICAL BIOLOGY
Volume 5, Issue 7, Pages 502-507

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nchembio.184

Keywords

-

Funding

  1. Swiss National Science Foundation (SNSF)
  2. Novartis Foundation
  3. MRC [MC_U105115240] Funding Source: UKRI
  4. Medical Research Council [MC_U105115240] Funding Source: researchfish

Ask authors/readers for more resources

Here we describe a phage strategy for the selection of ligands based on bicyclic or linear peptides attached covalently to an organic core. We designed peptide repertoires with three reactive cysteine residues, each spaced apart by several random amino acid residues, and we fused the repertoires to the phage gene-3-protein. Conjugation with tris-(bromomethyl) benzene via the reactive cysteines generated repertoires of peptide conjugates with two peptide loops anchored to a mesitylene core. Iterative affinity selections yielded several enzyme inhibitors; after further mutagenesis and selection, we were able to chemically synthesize a lead inhibitor (PK15; K(i) = 1.5 nM) specific to human plasma kallikrein that efficiently interrupted the intrinsic coagulation pathway in human plasma tested ex vivo. This approach offers a powerful means of generating and selecting bicyclic macrocycles (or if cleaved, linear derivatives thereof) as ligands poised at the interface of small-molecule drugs and biologics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available