4.8 Article

Stimulus-dependent phosphorylation of profilin-1 in angiogenesis

Journal

NATURE CELL BIOLOGY
Volume 14, Issue 10, Pages 1046-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncb2580

Keywords

-

Categories

Funding

  1. National Institutes of Health [P01 HL029582, P01 HL076491, R21 HL094841]

Ask authors/readers for more resources

Angiogenesis, the formation of new blood vessels, is fundamental to development and post-injury tissue repair. Vascular endothelial growth factor (VEGF)-A guides and enhances endothelial cell migration to initiate angiogenesis. Profilin-1 (Pin-1) is an actin-binding protein that enhances actin filament formation and cell migration, but stimulus-dependent regulation of Pfn-1 has not been observed. Here, we show that VEGF-A-inducible phosphorylation of Pfn-1 at Tyr 129 is critical for endothelial cell migration and angiogenesis. Chemotactic activation of VEGF receptor kinase-2 (VEGFR2) and Src induces Pfn-1 phosphorylation in the cell leading edge, promoting Pin-1 binding to actin and actin polymerization. Conditional endothelial knock-in of phosphorylation-deficient Pfn1(Y129F) in mice reveals that Pfn-1 phosphorylation is critical for angiogenesis in response to wounding and ischaemic injury, but not for developmental angiogenesis. Thus, VEGFR2/Src-mediated phosphorylation of Pfn-1 bypasses canonical, multistep intracellular signalling events to initiate endothelial cell migration and angiogenesis, and might serve as a selective therapeutic target for anti-angiogenic therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available