4.8 Article

Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing

Journal

NATURE BIOTECHNOLOGY
Volume 32, Issue 12, Pages 1231-U92

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt.3073

Keywords

-

Funding

  1. National Institutes of Health [U01DK089565]
  2. Jane Coffin Childs Memorial Fund for Medical Research
  3. National Human Genome Research Institute [K99HG007982]
  4. China Scholarship Council

Ask authors/readers for more resources

Active DNA demethylation in mammals involves TET-mediated iterative oxidation of 5-methylcytosine (5mC)/5-hydroxymethylcytosine (5hmC) and subsequent excision repair of highly oxidized cytosine bases 5-formylcytosine (5fC)/5-carboxylcytosine (5caC) by thymine DNA glycosylase (TDG). However, quantitative and high-resolution analysis of active DNA demethylation activity remains challenging. Here, we describe M. SssI methylase-assisted bisulfite sequencing (MAB-seq), a method that directly maps 5fC/5caC at single-base resolution. Genome-wide MAB-seq allows systematic identification of 5fC/5caC in Tdg-depleted embryonic stem cells, thereby generating a base-resolution map of active DNA demethylome. A comparison of 5fC/5caC and 5hmC distribution maps indicates that catalytic processivity of TET enzymes correlates with local chromatin accessibility. MAB-seq also reveals strong strand asymmetry of active demethylation within palindromic CpGs. Integrating MAB-seq with other base-resolution mapping methods enables quantitative measurement of cytosine modification states at key transitioning steps of the active DNA demethylation cascade and reveals a regulatory role of 5fC/5caC excision repair in this step-wise process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available