4.8 Article

Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs

Journal

NATURE BIOTECHNOLOGY
Volume 31, Issue 2, Pages 170-174

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt.2461

Keywords

-

Funding

  1. Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries [NRF-2012-C1AAA001-2012M1A2A2026556]
  2. Intelligent Synthetic Biology Center through the Global Frontier Project of the Ministry of Education, Science and Technology (MEST) through the National Research Foundation of Korea [2011-0031963]
  3. World Class University program of MEST [R32-2008-000-10142-0]

Ask authors/readers for more resources

Small regulatory RNAs (sRNAs) regulate gene expression in bacteria. We designed synthetic sRNAs to identify and modulate the expression of target genes for metabolic engineering in Escherichia coli. Using synthetic sRNAs for the combinatorial knockdown of four candidate genes in 14 different strains, we isolated an engineered E. coli strain (tyrR- and csrA-repressed S17-1) capable of producing 2 g per liter of tyrosine. Using a library of 130 synthetic sRNAs, we also identified chromosomal gene targets that enabled substantial increases in cadaverine production. Repression of murE led to a 55% increase in cadaverine production compared to the reported engineered strain (XQ56 harboring the plasmid p15CadA)(1). The design principles and the engineering strategy using synthetic sRNAs reported here are generalizable to other bacteria and applicable in developing superior producer strains. The ability to fine-tune target genes with designed sRNAs provides substantial advantages over gene-knockout strategies and other large-scale target identification strategies owing to its easy implementation, ability to modulate chromosomal gene expression without modifying those genes and because it does not require construction of strain libraries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available