4.8 Article

Generation of oligodendroglial cells by direct lineage conversion

Journal

NATURE BIOTECHNOLOGY
Volume 31, Issue 5, Pages 434-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt.2564

Keywords

-

Funding

  1. Ellison Medical Foundation
  2. Stinehart-Reed Foundation
  3. National Institutes of Health [R01MH092931]
  4. New York Stem Cell Foundation
  5. Walter V. and Idun Berry Fellowship
  6. Swedish Research Council
  7. Swedish Society for Medical Research
  8. [R01EY10257]

Ask authors/readers for more resources

Transplantation of oligodendrocyte precursor cells (OPCs) is a promising potential therapeutic strategy for diseases affecting myelin. However, the derivation of engraftable OPCs from human pluripotent stem cells has proven difficult and primary OPCs are not readily available. Here we report the generation of induced OPCs (iOPCs) by direct lineage conversion. Forced expression of the three transcription factors Sox10, Olig2 and Zfp536 was sufficient to reprogram mouse and rat fibroblasts into iOPCs with morphologies and gene expression signatures resembling primary OPCs. More importantly, iOPCs gave rise to mature oligodendrocytes that could ensheath multiple host axons when co-cultured with primary dorsal root ganglion cells and formed myelin after transplantation into shiverer mice. We propose direct lineage reprogramming as a viable alternative approach for the generation of OPCs for use in disease modeling and regenerative medicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available