4.8 Article

Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay

Journal

NATURE BIOTECHNOLOGY
Volume 30, Issue 3, Pages 271-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/nbt.2137

Keywords

-

Funding

  1. Broad Institute
  2. Harvard Stem Cell Institute
  3. National Human Genome Research Institute [R01HG004037]
  4. Simons Center for Quantitative Biology at Cold Spring Harbor Laboratory
  5. National Science Foundation (NSF) [PHY-0957573, PHY-1022140]
  6. Division Of Physics
  7. Direct For Mathematical & Physical Scien [0957573] Funding Source: National Science Foundation

Ask authors/readers for more resources

Learning to read and write the transcriptional regulatory code is of central importance to progress in genetic analysis and engineering. Here we describe a massively parallel reporter assay (MPRA) that facilitates the systematic dissection of transcriptional regulatory elements. In MPRA, microarray-synthesized DNA regulatory elements and unique sequence tags are cloned into plasmids to generate a library of reporter constructs. These constructs are transfected into cells and tag expression is assayed by high-throughput sequencing. We apply MPRA to compare >27,000 variants of two inducible enhancers in human cells: a synthetic cAMP-regulated enhancer and the virus-inducible interferon-beta enhancer. We first show that the resulting data define accurate maps of functional transcription factor binding sites in both enhancers at single-nucleotide resolution. We then use the data to train quantitative sequence-activity models (QSAMs) of the two enhancers. We show that QSAMs from two cellular states can be combined to design enhancer variants that optimize potentially conflicting objectives, such as maximizing induced activity while minimizing basal activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available