4.8 Article

Conversion of proteins into biofuels by engineering nitrogen flux

Journal

NATURE BIOTECHNOLOGY
Volume 29, Issue 4, Pages 346-U160

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt.1789

Keywords

-

Funding

  1. UCLA-Department of Energy Institute for Genomics and Proteomics

Ask authors/readers for more resources

Biofuels are currently produced from carbohydrates and lipids in feedstock. Proteins, in contrast, have not been used to synthesize fuels because of the difficulties of deaminating protein hydrolysates. Here we apply metabolic engineering to generate Escherichia coli that can deaminate protein hydrolysates, enabling the cells to convert proteins to C4 and C5 alcohols at 56% of the theoretical yield. We accomplish this by introducing three exogenous transamination and deamination cycles, which provide an irreversible metabolic force that drives deamination reactions to completion. We show that Saccharomyces cerevisiae, E. coli, Bacillus subtilis and microalgae can be used as protein sources, producing up to 4,035 mg/l of alcohols from biomass containing similar to 22 g/l of amino acids. These results show the feasibility of using proteins for biorefineries, for which high-protein microalgae could be used as a feedstock with a possibility of maximizing algal growth(1) and total CO2 fixation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available