4.8 Article

Discovery and characterization of chromatin states for systematic annotation of the human genome

Journal

NATURE BIOTECHNOLOGY
Volume 28, Issue 8, Pages 817-U94

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt.1662

Keywords

-

Funding

  1. National Science Foundation [0905968]
  2. US National Human Genome Research Institute (NHGRI) [U54-HG004570, RC1-HG005334]
  3. MIT CompBio Group
  4. Direct For Biological Sciences
  5. Div Of Biological Infrastructure [0905968] Funding Source: National Science Foundation

Ask authors/readers for more resources

A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal 'chromatin states' in human T cells, based on recurrent and spatially coherent combinations of chromatin marks. We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, large-scale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available