4.8 Article

Crystal structure of the natural anion-conducting channelrhodopsin GtACR1

Journal

NATURE
Volume 561, Issue 7723, Pages 343-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41586-018-0511-6

Keywords

-

Funding

  1. Stanford Bio-X
  2. Kwanjeong Foundation
  3. JST PRESTO [JPMJPR1782, JPMJPR15P2]
  4. US Department of Energy, Scientific Discovery through Advanced Computing (SciDAC) program (R.O.D.), MEXT [17H03007, 25104009/15H02391]
  5. J.S.T. CREST [JPMJCR1753]
  6. Mathers Charitable Foundation
  7. NIMH [R01MH075957]
  8. Grants-in-Aid for Scientific Research [17H03007] Funding Source: KAKEN

Ask authors/readers for more resources

The naturally occurring channelrhodopsin variant anion channelrhodopsin-1 (ACR1), discovered in the cryptophyte algae Guillardia theta, exhibits large light-gated anion conductance and high anion selectivity when expressed in heterologous settings, properties that support its use as an optogenetic tool to inhibit neuronal firing with light. However, molecular insight into ACR1 is lacking owing to the absence of structural information underlying light-gated anion conductance. Here we present the crystal structure of G. theta ACR1 at 2.9 angstrom resolution. The structure reveals unusual architectural features that span the extracellular domain, retinal-binding pocket, Schiff-base region, and anion-conduction pathway. Together with electrophysiological and spectroscopic analyses, these findings reveal the fundamental molecular basis of naturally occurring light-gated anion conductance, and provide a framework for designing the next generation of optogenetic tools.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available