4.8 Article

Electrically controlled water permeation through graphene oxide membranes

Journal

NATURE
Volume 559, Issue 7713, Pages 236-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41586-018-0292-y

Keywords

-

Funding

  1. Royal Society
  2. Engineering and Physical Sciences Research Council, UK [EP/K016946/1, EP/N013670/1, EP/P00119X/1]
  3. British Council [279336045]
  4. European Research Council [679689]
  5. Lloyd's Register Foundation
  6. EPSRC [EP/K016946/1, EP/N010345/1, EP/N013670/1, EP/P025021/1, EP/N014685/1, EP/P00119X/1, EP/K005014/1] Funding Source: UKRI

Ask authors/readers for more resources

Controlled transport of water molecules through membranes and capillaries is important in areas as diverse as water purification and healthcare technologies(1-7). Previous attempts to control water permeation through membranes (mainly polymeric ones) have concentrated on modulating the structure of the membrane and the physicochemical properties of its surface by varying the pH, temperature or ionic strength(3,8). Electrical control over water transport is an attractive alternative; however, theory and simulations(9-14) have often yielded conflicting results, from freezing of water molecules to melting of ice(14-16) under an applied electric field. Here we report electrically controlled water permeation through micrometre-thick graphene oxide membranes(17-21). Such membranes have previously been shown to exhibit ultrafast permeation of water(17,22) and molecular sieving properties(18,21), with the potential for industrial-scale production. To achieve electrical control over water permeation, we create conductive filaments in the graphene oxide membranes via controllable electrical breakdown. The electric field that concentrates around these current-carrying filaments ionizes water molecules inside graphene capillaries within the graphene oxide membranes, which impedes water transport. We thus demonstrate precise control of water permeation, from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies for artificial biological systems, tissue engineering and filtration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available