4.8 Article

Spontaneous transfer of chirality in an atropisomerically enriched two-axis system

Journal

NATURE
Volume 509, Issue 7498, Pages 71-75

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature13189

Keywords

-

Funding

  1. National Institute of General Medical Sciences of the NIH [GM-068649]
  2. National Science Foundation
  3. Yale University Faculty of Arts and Sciences High Performance Computing Center
  4. National Science Foundation [CNS 08-21132]

Ask authors/readers for more resources

One of the most well-recognized stereogenic elements in a chiral molecule is an sp(3)-hybridized carbon atom that is connected to four different substituents. Axes of chirality can also exist about bonds with hindered barriers of rotation; molecules containing such axes are known as atropisomers(1). Understanding the dynamics of these systems can be useful, for example, in the design of single-atropisomer drugs(2) or molecular switches and motors(3). For molecules that exhibit a single axis of chirality, rotation about that axis leads to racemization as the system reaches equilibrium. Here we report a two-axis system for which an enantioselective reaction produces four stereoisomers (two enantiomeric pairs): following a catalytic asymmetric transformation, we observe a kinetically controlled product distribution that is perturbed from the system's equilibrium position. As the system undergoes isomerization, one of the diastereomeric pairs drifts spontaneously to a higher enantiomeric ratio. In a compensatory manner, the enantiomeric ratio of the other diastereomeric pair decreases. These observations are made for a class of unsymmetrical amides that exhibits two asymmetric axes-one axis is defined through a benzamide substructure, and the other axis is associated with differentially N,N-disubstituted amides. The stereodynamics of these substrates provides an opportunity to observe a curious interplay of kinetics and thermodynamics intrinsic to a system of stereoisomers that is constrained to a situation of partial equilibrium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available