4.8 Article

Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells

Journal

NATURE
Volume 512, Issue 7513, Pages 198-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature13619

Keywords

-

Funding

  1. National Institutes of Health (NIH) [F32 HL106989]
  2. Science Foundation Ireland PI award [10/IN.1/B2972]
  3. CIRM New Faculty Award [RN2-00934, NIH R01 HL092471]
  4. California Institute for Regenerative Medicine (CIRM)

Ask authors/readers for more resources

Haematopoietic stem cells (HSCs) self-renew for life, thereby making them one of the few blood cells that truly age(1,2). Paradoxically, although HSCs numerically expand with age, their functional activity declines over time, resulting in degraded blood production and impaired engraftment following transplantation(2). While many drivers of HSC ageing have been proposed(2-5), the reason why HSC function degrades with age remains unknown. Here we show that cycling old HSCs in mice have heightened levels of replication stress associated with cell cycle defects and chromosome gaps or breaks, which are due to decreased expression of mini-chromosome maintenance (MCM) helicase components and altered dynamics of DNA replication forks. Nonetheless, old HSCs survive replication unless confronted with a strong replication challenge, such as transplantation. Moreover, once old HSCs re-establish quiescence, residual replication stress on ribosomal DNA (rDNA) genes leads to the formation of nucleolar-associated gamma H2AX signals, which persist owing to ineffective H2AX dephosphorylation by mislocalized PP4c phosphatase rather than ongoing DNA damage. Persistent nucleolar gamma H2AX also acts as a histone modification marking the transcriptional silencing of rDNA genes and decreased ribosome biogenesis in quiescent old HSCs. Our results identify replication stress as a potent driver of functional decline in old HSCs, and highlight the MCM DNA helicase as a potential molecular target for rejuvenation therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available