4.8 Article

The zebrafish reference genome sequence and its relationship to the human genome

Journal

NATURE
Volume 496, Issue 7446, Pages 498-503

Publisher

NATURE PORTFOLIO
DOI: 10.1038/nature12111

Keywords

-

Funding

  1. National Institutes of Health (NIH) [R01 GM085318, P01 HD22486, R01 OD011116, R01 RR020833, 1 R01 DK55377-01A1]
  2. European Commission [LSHG-CT-2003-503496, HEALTH-F4-2010-242048]
  3. German Human Genome Project (DHGP) [01 KW 9627, 01 KW 9919]
  4. Wellcome Trust [098051]
  5. Biotechnology and Biological Sciences Research Council [BBS/E/T/000PR5885, BBS/E/T/000PR6193] Funding Source: researchfish
  6. BBSRC [BBS/E/T/000PR5885, BBS/E/T/000PR6193] Funding Source: UKRI

Ask authors/readers for more resources

Zebrafish have become a popular organism for the study of vertebrate gene function(1,2). The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease(3-5). However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes(6), the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available