4.8 Article

Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody

Journal

NATURE
Volume 502, Issue 7472, Pages 575-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature12572

Keywords

-

Funding

  1. Stanford Medical Scientist Training Program
  2. American Heart Association
  3. National Science Foundation
  4. Ruth L. Kirschstein National Research Service Award
  5. National Institutes of Health [NS02847123, GM08311806]
  6. Mathers Foundation
  7. Howard Hughes Medical Institute

Ask authors/readers for more resources

G-protein-coupled receptors (GPCRs) are integral membrane proteins that have an essential role in human physiology, yet the molecular processes through which they bind to their endogenous agonists and activate effector proteins remain poorly understood. So far, it has not been possible to capture an active-state GPCR bound to its native neurotransmitter. Crystal structures of agonist-bound GPCRs have relied on the use of either exceptionally high-affinity agonists(1,2) or receptor stabilization by mutagenesis(3-5). Many natural agonists such as adrenaline, which activates the beta(2)-adrenoceptor (beta(2)AR), bind with relatively low affinity, and they are often chemically unstable. Using directed evolution, we engineered a high-affinity camelid antibody fragment that stabilizes the active state of the beta(2)AR, and used this to obtain crystal structures of the activated receptor bound to multiple ligands. Here we present structures of the active-state human beta(2)AR bound to three chemically distinct agonists: the ultrahigh-affinity agonist BI167107, the high-affinity catecholamine agonist hydroxybenzyl isoproterenol, and the low-affinity endogenous agonist adrenaline. The crystal structures reveal a highly conserved overall ligand recognition and activation mode despite diverse ligand chemical structures and affinities that range from 100 nM to similar to 80 pM. Overall, the adrenaline-bound receptor structure is similar to the others, but it has substantial rearrangements in extracellular loop three and the extracellular tip of transmembrane helix 6. These structures also reveal a water-mediated hydrogen bond between two conserved tyrosines, which appears to stabilize the active state of the beta(2)AR and related GPCRs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available