4.8 Article

A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis

Journal

NATURE
Volume 500, Issue 7460, Pages 93-U120

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature12287

Keywords

-

Funding

  1. National Institutes of Health (NIH) [CA163086, CA129325, CA113872, CA166835]
  2. Starr Cancer Consortium [I5-A554]
  3. Leukemia and Lymphoma Society (LLS) SCOR [7013-02, 7132-08]
  4. Rockefeller University Center for Clinical and Translational Science from NIH [UL1RR024143]
  5. Abby Rockefeller Mauze Trust
  6. Maloris Foundation

Ask authors/readers for more resources

Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression(1). AML1-ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation(2). AML1-ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis(3-6), making it important to identify co-regulatory factors that 'read' the NHR2 oligomerization and contribute to leukaemogenesis(4). Here we show that, in human leukaemic cells, AML1-ETO resides in and functions through a stable AML1-ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1-ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2-N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1-ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1-ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available