4.6 Article

PROBABILISTIC INTERPRETATION OF LINEAR SOLVERS

Journal

SIAM JOURNAL ON OPTIMIZATION
Volume 25, Issue 1, Pages 234-260

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/140955501

Keywords

linear programming; quasi-Newton methods; conjugate gradient; Gaussian inference

Ask authors/readers for more resources

This paper proposes a probabilistic framework for algorithms that iteratively solve unconstrained linear problems Bx = b with positive definite B for x. The goal is to replace the point estimates returned by existing methods with a Gaussian posterior belief over the elements of the inverse of B, which can be used to estimate errors. Recent probabilistic interpretations of the secant family of quasi-Newton optimization algorithms are extended. Combined with properties of the conjugate gradient algorithm, this leads to uncertainty-calibrated methods with very limited cost overhead over conjugate gradients, a self-contained novel interpretation of the quasi-Newton and conjugate gradient algorithms, and a foundation for new nonlinear optimization methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available