4.8 Article

Enhanced nitrogen deposition over China

Journal

NATURE
Volume 494, Issue 7438, Pages 459-462

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature11917

Keywords

-

Funding

  1. Chinese National Basic Research Program [2009CB118606]
  2. NSFC [31121062, 41071151, 40973054]
  3. [GK 1070]
  4. Biotechnology and Biological Sciences Research Council [BBS/E/C/00005196] Funding Source: researchfish
  5. BBSRC [BBS/E/C/00005189, BBS/E/C/00005196] Funding Source: UKRI

Ask authors/readers for more resources

China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen(1,2). These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity(1,3-5). However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen Per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s(6), before the introduction of mitigation measures(7,8). Nitrogen from ammonium (NH4+) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3-), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized crop-lands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available