4.8 Article

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr2CuO3

Journal

NATURE
Volume 485, Issue 7396, Pages 82-U108

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature10974

Keywords

-

Funding

  1. Swiss National Science Foundation and its NCCR MaNEP
  2. Alexander von Humboldt foundation
  3. Foundation for Fundamental Research on Matter
  4. Netherlands Organisation for Scientific Research
  5. European contract NOVMAG
  6. Division of Materials Science and Engineering, US Department of Energy [DE-SC0007091]
  7. U.S. Department of Energy (DOE) [DE-SC0007091] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. Even if electrons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum numbers: spin, charge and orbital(1). The hallmark of one-dimensional physics is a breaking up of the elementary electron into its separate degrees of freedom(2). The separation of the electron into independent quasi-particles that carry either spin (spinons) or charge (holons) was first observed fifteen years ago(3). Here we report observation of the separation of the orbital degree of freedom (orbiton) using resonant inelastic X-ray scattering on the one-dimensional Mott insulator Sr2CuO3. We resolve an orbiton separating itself from spinons and propagating through the lattice as a distinct quasi-particle with a substantial dispersion in energy over momentum, of about 0.2 electronvolts, over nearly one Brillouin zone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available