4.8 Article

An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress

Journal

NATURE
Volume 472, Issue 7341, Pages 115-U151

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature09861

Keywords

-

Funding

  1. Swiss National Science Foundation [31003A-125005]
  2. European Commission [FP7 226477]
  3. RECBREED consortium [FP7 227190]
  4. Epigenome Network of Excellence [FP6 503433]
  5. Swiss National Science Foundation (SNF) [31003A_125005] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Eukaryotic genomes consist to a significant extent of retrotransposons that are suppressed by host epigenetic mechanisms, preventing their uncontrolled propagation(1,2). However, it is not clear how this is achieved. Here we show that in Arabidopsis seedlings subjected to heat stress, a copia-type retrotransposon named ONSEN (Japanese 'hot spring') not only became transcriptionally active but also synthesized extrachromosomal DNA copies. Heat-induced ONSEN accumulation was stimulated in mutants impaired in the biogenesis of small interfering RNAs (siRNAs); however, there was no evidence of transposition occurring in vegetative tissues. After stress, both ONSEN transcripts and extrachromosomal DNA gradually decayed and were no longer detected after 20-30 days. Surprisingly, a high frequency of new ONSEN insertions was observed in the progeny of stressed plants deficient in siRNAs. Insertion patterns revealed that this transgenerational retrotransposition occurred during flower development and before gametogenesis. Therefore in plants with compromised siRNA biogenesis, memory of stress was maintained throughout development, priming ONSEN to transpose during differentiation of generative organs. Retrotransposition was not observed in the progeny of wild-type plants subjected to stress or in non-stressed mutant controls, pointing to a crucial role of the siRNA pathway in restricting retrotransposition triggered by environmental stress. Finally, we found that natural and experimentally induced variants in ONSEN insertions confer heat responsiveness to nearby genes, and therefore mobility bursts may generate novel, stress-responsive regulatory gene networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available