4.8 Article

Vernier templating and synthesis of a 12-porphyrin nano-ring

Journal

NATURE
Volume 469, Issue 7328, Pages 72-75

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature09683

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC)
  2. Diamond Light Source
  3. European Commission [MRTN-CT-2006-036040, THREADMILL]
  4. Clarendon Fund
  5. Engineering and Physical Sciences Research Council [EP/D076552/1] Funding Source: researchfish
  6. EPSRC [EP/D076552/1] Funding Source: UKRI

Ask authors/readers for more resources

Templates are widely used to arrange molecular components so they can be covalently linked into complex molecules that are not readily accessible by classical synthetic methods(1-7). Nature uses sophisticated templates such as the ribosome, whereas chemists use simple ions or small molecules. But as we tackle the synthesis of larger targets, we require larger templates-which themselves become synthetically challenging. Here we show that Vernier complexes can solve this problem: if the number of binding sites on the template, n(T), is not a multiple of the number of binding sites on the molecular building blocks, n(B), then small templates can direct the assembly of relatively large Vernier complexes where the number of binding sites in the product, n(P), is the lowest common multiple of n(B) and n(T) (refs 8, 9). We illustrate the value of this concept for the covalent synthesis of challenging targets by using a simple six-site template to direct the synthesis of a 12-porphyrin nano-ring with a diameter of 4.7 nm, thus establishing Vernier templating as a powerful new strategy for the synthesis of large monodisperse macromolecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available