4.8 Article

Quantum storage of photonic entanglement in a crystal

Journal

NATURE
Volume 469, Issue 7331, Pages 508-U79

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature09662

Keywords

-

Funding

  1. Swiss NCCR Quantum Photonics
  2. Science and Technology Cooperation Program Switzerland-Russia
  3. QuRep
  4. ERC-Qore
  5. FQRNT
  6. ICREA Funding Source: Custom

Ask authors/readers for more resources

Entanglement is the fundamental characteristic of quantum physics-much experimental effort is devoted to harnessing it between various physical systems. In particular, entanglement between light and material systems is interesting owing to their anticipated respective roles as 'flying' and stationary qubits in quantum information technologies (such as quantum repeaters(1-3) and quantum networks(4)). Here we report the demonstration of entanglement between a photon at a telecommunication wavelength (1,338 nm) and a single collective atomic excitation stored in a crystal. One photon from an energy-time entangled pair(5) is mapped onto the crystal and then released into a well-defined spatial mode after a predetermined storage time. The other (telecommunication wavelength) photon is sent directly through a 50-metre fibre link to an analyser. Successful storage of entanglement in the crystal is proved by a violation of the Clauser-Horne-Shimony-Holt inequality(6) by almost three standard deviations (S=2.64 +/- 0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building multiplexed quantum repeaters(7) for long-distance quantum networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available