4.8 Article

Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs

Journal

NATURE
Volume 476, Issue 7358, Pages 92-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature10206

Keywords

-

Funding

  1. Johns Hopkins University Mouse Tri-Lab
  2. National Institutes of Health [GM076430]
  3. David and Lucile Packard Foundation
  4. Alfred P. Sloan Foundation

Ask authors/readers for more resources

Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and regulate a wide array of light-dependent physiological processes(1-11). Genetic ablation of ipRGCs eliminates circadian photoentrainment and severely disrupts the pupillary light reflex (PLR)(12,13). Here we show that ipRGCs consist of distinct subpopulations that differentially express the Brn3b transcription factor, and can be functionally distinguished. Brn3b-negative M1 ipRGCs innervate the suprachiasmatic nucleus (SCN) of the hypothalamus, whereas Brn3b-positive ipRGCs innervate all other known brain targets, including the olivary pre-tectal nucleus. Consistent with these innervation patterns, selective ablation of Brn3b-positive ipRGCs severely disrupts the PLR, but does not impair circadian photoentrainment. Thus, we find that molecularly distinct subpopulations of M1 ipRGCs, which are morphologically and electrophysiologically similar, innervate different brain regions to execute specific light-induced functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available