4.8 Article

On-demand single-electron transfer between distant quantum dots

Journal

NATURE
Volume 477, Issue 7365, Pages 439-442

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature10444

Keywords

-

Funding

  1. UK EPSRC
  2. Toshiba Research Europe Limited
  3. QIPIRC

Ask authors/readers for more resources

Single-electron circuits of the future, consisting of a network of quantum dots, will require a mechanism to transport electrons from one functional part of the circuit to another. For example, in a quantum computer(1) decoherence and circuit complexity can be reduced by separating quantum bit (qubit) manipulation from measurement and by providing a means of transporting electrons between the corresponding parts of the circuit(2). Highly controlled tunnelling between neighbouring dots has been demonstrated(3,4), and our ability to manipulate electrons in single-and double-dot systems is improving rapidly(5-8). For distances greater than a few hundred nanometres, neither free propagation nor tunnelling is viable while maintaining confinement of single electrons. Here we show how a single electron may be captured in a surface acoustic wave minimum and transferred from one quantum dot to a second, unoccupied, dot along a long, empty channel. The transfer direction may be reversed and the same electron moved back and forth more than sixty times-a cumulative distance of 0.25 mm-without error. Such on-chip transfer extends communication between quantum dots to a range that may allow the integration of discrete quantum information processing components and devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available