4.8 Article

The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b

Journal

NATURE
Volume 465, Issue 7301, Pages 1049-1051

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature09111

Keywords

-

Funding

  1. Netherlands Organisation for Scientific Research (NWO)

Ask authors/readers for more resources

For extrasolar planets discovered using the radial velocity method 1, the spectral characterization of the host star leads to a mass estimate of the star and subsequently of the orbiting planet. If the orbital velocity of the planet could be determined, the masses of both star and planet could be calculated using Newton's law of gravity, just as in the case of stellar double-line eclipsing binaries. Here we report high-dispersion ground-based spectroscopy of a transit of the extrasolar planet HD 209458b. We see a significant wavelength shift in absorption lines from carbon monoxide in the planet's atmosphere, which we conclude arises from a change in the radial component of the planet's orbital velocity. The masses of the star and planet are 1.00 +/- 0.22M(Sun) and 0.64 +/- 0.09M(Jup) respectively. A blueshift of the carbon monoxide signal of approximately 2 km s(-1) with respect to the systemic velocity of the host star suggests the presence of a strong wind flowing from the irradiated dayside to the non-irradiated nightside of the planet within the 0.01-0.1 mbar atmospheric pressure range probed by these observations. The strength of the carbon monoxide signal suggests a carbon monoxide mixing ratio of (1-3) x 10(-3) in this planet's upper atmosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available