4.8 Article

Coherent control of Rydberg states in silicon

Journal

NATURE
Volume 465, Issue 7301, Pages 1057-U116

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature09112

Keywords

-

Funding

  1. Netherlands Organisation for Scientific Research
  2. Engineering and Physical Sciences Research Council [EP/H026622/1, EP/E061265/1]
  3. Engineering and Physical Sciences Research Council [EP/E061265/1, EP/H026622/1] Funding Source: researchfish
  4. EPSRC [EP/E061265/1, EP/H026622/1] Funding Source: UKRI

Ask authors/readers for more resources

Laser cooling and electromagnetic traps have led to a revolution in atomic physics, yielding dramatic discoveries ranging from Bose-Einstein condensation to the quantum control of single atoms(1). Of particular interest, because they can be used in the quantum control of one atom by another, are excited Rydberg states(2-4), where wavefunctions are expanded from their ground-state extents of less than 0.1 nm to several nanometres and even beyond; this allows atoms far enough apart to be non-interacting in their ground states to strongly interact in their excited states. For eventual application of such states(5), a solid-state implementation is very desirable. Here we demonstrate the coherent control of impurity wavefunctions in the most ubiquitous donor in a semiconductor, namely phosphorus-doped silicon. In our experiments, we use a free-electron laser to stimulate and observe photon echoes(6,7), the orbital analogue of the Hahn spin echo(8), and Rabi oscillations familiar from magnetic resonance spectroscopy. As well as extending atomic physicists' explorations(1-3,9) of quantum phenomena to the solid state, our work adds coherent terahertz radiation, as a particularly precise regulator of orbitals in solids, to the list of controls, such as pressure and chemical composition, already familiar to materials scientists(10).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available