4.2 Article

Application of two intelligent systems in predicting environmental impacts of quarry blasting

Journal

ARABIAN JOURNAL OF GEOSCIENCES
Volume 8, Issue 11, Pages 9647-9665

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s12517-015-1908-2

Keywords

Blasting environmental impacts; Peak particle velocity; Air overpressure; Flyrock; Artificial neural network; Adaptive neuro-fuzzy inference system

Funding

  1. Universiti Teknologi Malaysia [01H88]

Ask authors/readers for more resources

Blasting, as the most frequently used method for hard rock fragmentation, is a hazardous aspect in mining industries. These operations produce several undesirable environmental impacts such as ground vibration, air-overpressure (AOp), and flyrock in the nearby environments. These environmental impacts may cause injury to human and damage to structures, groundwater, and ecology of the nearby area. This paper is aimed to predict the blasting environmental impacts in granite quarry sites through two intelligent systems, namely artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 166 blasting operations at four granite quarry sites in Malaysia were investigated and the values of peak particle velocity (PPV), AOp, and flyrock were precisely recorded in each blasting operation. Considering some model performance indices including coefficient of determination (R (2)), value account for (VAF), and root mean square error (RMSE), and also using simple ranking procedure, the best models for prediction of PPV, AOp, and flyrock were selected. The results demonstrated that the ANFIS models yield higher performance capacity compared to ANN models. In the case of testing datasets, the R (2) values of 0.939, 0.947, and 0.959 for prediction of PPV, AOp, and flyrock, respectively, suggest the superiority of the ANFIS technique, while in predicting PPV, AOp, and flyrock using ANN technique, these values are 0.771, 0.864, and 0.834, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available