4.8 Article

Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons

Journal

NATURE
Volume 466, Issue 7306, Pages 597-U1

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature09259

Keywords

-

Funding

  1. Austrian Ministry of Science and Research (Bundesministerium fur Wissenschaft und Forschung)
  2. Austrian Science Fund (Fonds zur Forderung der wissenschaftlichen Forschung)
  3. European Union [FP7-ICT-2007-C]
  4. Marie Curie International Incoming Fellowship

Ask authors/readers for more resources

Quantum many-body systems can have phase transitions(1) even at zero temperature; fluctuations arising from Heisenberg's uncertainty principle, as opposed to thermal effects, drive the system from one phase to another. Typically, during the transition the relative strength of two competing terms in the system's Hamiltonian changes across a finite critical value. A well-known example is the Mott-Hubbard quantum phase transition from a superfluid to an insulating phase(2,3), which has been observed for weakly interacting bosonic atomic gases. However, for strongly interacting quantum systems confined to lower-dimensional geometry, a novel type(4,5) of quantum phase transition may be induced and driven by an arbitrarily weak perturbation to the Hamiltonian. Here we observe such an effect-the sine-Gordon quantum phase transition from a superfluid Luttinger liquid to a Mott insulator(6,7)-in a one-dimensional quantum gas of bosonic caesium atoms with tunable interactions. For sufficiently strong interactions, the transition is induced by adding an arbitrarily weak optical lattice commensurate with the atomic granularity, which leads to immediate pinning of the atoms. We map out the phase diagram and find that our measurements in the strongly interacting regime agree well with a quantum field description based on the exactly solvable sine-Gordon model(8). We trace the phase boundary all the way to the weakly interacting regime, where we find good agreement with the predictions of the one-dimensional Bose-Hubbard model. Our results open up the experimental study of quantum phase transitions, criticality and transport phenomena beyond Hubbard-type models in the context of ultracold gases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available