4.8 Article

Programming biomolecular self-assembly pathways

Journal

NATURE
Volume 451, Issue 7176, Pages 318-U4

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature06451

Keywords

-

Funding

  1. Direct For Computer & Info Scie & Enginr
  2. Division of Computing and Communication Foundations [832824] Funding Source: National Science Foundation

Ask authors/readers for more resources

In nature, self- assembling and disassembling complexes of proteins and nucleic acids bound to a variety of ligands perform intricate and diverse dynamic functions. In contrast, attempts to rationally encode structure and function into synthetic amino acid and nucleic acid sequences have largely focused on engineering molecules that self- assemble into prescribed target structures, rather than on engineering transient system dynamics(1,2). To design systems that perform dynamic functions without human intervention, it is necessary to encode within the biopolymer sequences the reaction pathways by which self- assembly occurs. Nucleic acids show promise as a design medium for engineering dynamic functions, including catalytic hybridization(3-6), triggered self- assembly(7) and molecular computation(8,9). Here, we program diverse molecular self- assembly and disassembly pathways using a 'reaction graph' abstraction to specify complementarity relationships between modular domains in a versatile DNA hairpin motif. Molecular programs are executed for a variety of dynamic functions: catalytic formation of branched junctions, autocatalytic duplex formation by a cross- catalytic circuit, nucleated dendritic growth of a binary molecular 'tree', and autonomous locomotion of a bipedal walker.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available