4.8 Article

PRDM16 controls a brown fat/skeletal muscle switch

Journal

NATURE
Volume 454, Issue 7207, Pages 961-U27

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature07182

Keywords

-

Funding

  1. American Heart Association
  2. Japan Society for the Promotion of Science
  3. Susan Komen Breast Cancer Foundation
  4. Picower Foundation
  5. National Institutes of Health
  6. National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases

Ask authors/readers for more resources

Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 ( PRD1- BF1- RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available