4.8 Article

Variations in DNA elucidate molecular networks that cause disease

Journal

NATURE
Volume 452, Issue 7186, Pages 429-435

Publisher

NATURE PORTFOLIO
DOI: 10.1038/nature06757

Keywords

-

Funding

  1. NHLBI NIH HHS [P01 HL028481-240010, P01 HL028481, P01 HL028481-24, P01 HL030568, P01 HL030568-250011] Funding Source: Medline
  2. NIDDK NIH HHS [R01 DK071673-03, R01 DK071673] Funding Source: Medline

Ask authors/readers for more resources

Identifying variations in DNA that increase susceptibility to disease is one of the primary aims of genetic studies using a forward genetics approach. However, identification of disease- susceptibility genes by means of such studies provides limited functional information on how genes lead to disease. In fact, in most cases there is an absence of functional information altogether, preventing a definitive identification of the susceptibility gene or genes. Here we develop an alternative to the classic forward genetics approach for dissecting complex disease traits where, instead of identifying susceptibility genes directly affected by variations in DNA, we identify gene networks that are perturbed by susceptibility loci and that in turn lead to disease. Application of this method to liver and adipose gene expression data generated from a segregating mouse population results in the identification of a macrophage- enriched network supported as having a causal relationship with disease traits associated with metabolic syndrome. Three genes in this network, lipoprotein lipase ( Lpl), lactamase beta ( Lactb) and protein phosphatase 1- like ( Ppm1l), are validated as previously unknown obesity genes, strengthening the association between this network and metabolic disease traits. Our analysis provides direct experimental support that complex traits such as obesity are emergent properties of molecular networks that are modulated by complex genetic loci and environmental factors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available