4.8 Article

Low-speed fracture instabilities in a brittle crystal

Journal

NATURE
Volume 455, Issue 7217, Pages 1224-U41

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature07297

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [Gu 367/30]
  2. NRL
  3. ONR
  4. ISF [1110/04]
  5. EPSRC [GR/S61263/01, EP/5C23938/1, EP/C52392X/1]
  6. ANR-France [ANR-05-CIGC:LN3M]
  7. IDRIS, Orsay, France [051841]
  8. Engineering and Physical Sciences Research Council [EP/C523938/1, GR/S61263/01, EP/C52392X/1] Funding Source: researchfish
  9. EPSRC [EP/C523938/1] Funding Source: UKRI

Ask authors/readers for more resources

When a brittle material is loaded to the limit of its strength, it fails by the nucleation and propagation of a crack(1). The conditions for crack propagation are created by stress concentration in the region of the crack tip and depend on macroscopic parameters such as the geometry and dimensions of the specimen(2). The way the crack propagates, however, is entirely determined by atomic- scale phenomena, because brittle crack tips are atomically sharp and propagate by breaking the variously oriented interatomic bonds, one at a time, at each point of the moving crack front(1,3). The physical interplay of multiple length scales makes brittle fracture a complex 'multi-scale' phenomenon. Several intermediate scales may arise in more complex situations, for example in the presence of microdefects or grain boundaries. The occurrence of various instabilities in crack propagation at very high speeds is well known(1), and significant advances have been made recently in understanding their origin(4,5). Here we investigate low- speed propagation instabilities in silicon using quantum- mechanical hybrid, multi- scale modelling and single- crystal fracture experiments. Our simulations predict a crack- tip reconstruction that makes low- speed crack propagation unstable on the ( 111) cleavage plane, which is conventionally thought of as the most stable cleavage plane. We perform experiments in which this instability is observed at a range of low speeds, using an experimental technique designed for the investigation of fracture under low tensile loads. Further simulations explain why, conversely, at moderately high speeds crack propagation on the ( 110) cleavage plane becomes unstable and deflects onto ( 111) planes, as previously observed experimentally(6,7).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available