4.8 Article

Direct observation of the nanoscale dynamics of membrane lipids in a living cell

Journal

NATURE
Volume 457, Issue 7233, Pages 1159-U121

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature07596

Keywords

-

Ask authors/readers for more resources

Cholesterol-mediated lipid interactions are thought to have a functional role in many membrane-associated processes such as signalling events(1-5). Although several experiments indicate their existence, lipid nanodomains ('rafts') remain controversial owing to the lack of suitable detection techniques in living cells(4,6-9). The controversy is reflected in their putative size of 5-200 nm, spanning the range between the extent of a protein complex and the resolution limit of optical microscopy. Here we demonstrate the ability of stimulated emission depletion (STED) far-field fluorescence nanoscopy(10) to detect single diffusing (lipid) molecules in nanosized areas in the plasma membrane of living cells. Tuning of the probed area to spot sizes similar to 70-fold below the diffraction barrier reveals that unlike phosphoglycerolipids, sphingolipids and glycosylphosphatidylinositol-anchored proteins are transiently (similar to 10-20 ms) trapped in cholesterol-mediated molecular complexes dwelling within <20-nm diameter areas. The non-invasive optical recording of molecular time traces and fluctuation data in tunable nanoscale domains is a powerful new approach to study the dynamics of biomolecules in living cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available