4.8 Article

Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells

Journal

NATURE
Volume 455, Issue 7216, Pages 1119-U11

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature07329

Keywords

-

Funding

  1. Chinese Ministry of Science and Technology [2007AA02Z1A2]

Ask authors/readers for more resources

In the Drosophila midgut, multipotent intestinal stem cells (ISCs) that are scattered along the epithelial basement membrane maintain tissue homeostasis by their ability to steadily produce daughters that differentiate into either enterocytes or enteroendocrine cells, depending on the levels of Notch activity(1-3). However, the mechanisms controlling ISC self- renewal remain elusive. Here we show that a canonical Wnt signalling pathway controls ISC self-renewal. The ligand Wingless (Wg) is specifically expressed in the circular muscles next to ISCs, separated by a thin layer of basement membrane. Reduced function of wg causes ISC quiescence and differentiation, whereas wg overexpression produces excessive ISC- like cells that express high levels of the Notch ligand, Delta. Clonal analysis shows that the main downstream components of the Wg pathway, including Frizzled, Dishevelled and Armadillo, are autonomously required for ISC self- renewal. Furthermore, epistatic analysis suggests that Notch acts downstream of the Wg pathway and a hierarchy of Wg/Notch signalling pathways controls the balance between self- renewal and differentiation of ISCs. These data suggest that the underlying circular muscle constitutes the ISC niche, which produce Wg signals that act directly on ISCs to promote ISC self-renewal. This study demonstrates markedly conserved mechanisms regulating ISCs from Drosophila to mammals. The identification of the Drosophila ISC niche and the principal self- renewal signal will facilitate further understanding of intestinal homeostasis control and tumorigenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available