4.6 Article

Assessment on agricultural drought vulnerability in the Yellow River basin based on a fuzzy clustering iterative model

Journal

NATURAL HAZARDS
Volume 67, Issue 2, Pages 919-936

Publisher

SPRINGER
DOI: 10.1007/s11069-013-0617-y

Keywords

Agricultural drought; Vulnerability assessment; Sensitivity; Adaptation capacity; Fuzzy clustering iterative model; Yellow River basin

Funding

  1. Foundation for the State Key Development Program for Basic Research of China [2010CB951102]
  2. Innovative Research Groups of the National Natural Science Foundation of China [51021106]
  3. National Natural Science Foundation of China [51009150]

Ask authors/readers for more resources

Drought is one of the major natural disasters occurring in China and causes severe impacts on agricultural production and food security. Therefore, agricultural drought vulnerability assessment has an important significance for reducing regional agricultural drought losses and drought disaster risks. In view of agricultural drought vulnerability assessment with the characteristics of multiple factors and uncertainty, we applied the fuzzy comprehensive evaluation framework to agricultural drought vulnerability model. The agricultural drought vulnerability assessment model was constructed based on the multi-layer and multi-index fuzzy clustering iterative method, which can better reveal the drought vulnerability (including sensitivity and adaptation capacity). Furthermore, the cycle iterative algorithm was used to obtain the optimal index weight vector of a given accuracy by setting the objective function. It provides a new approach to weight determination of agricultural drought vulnerability assessment. In this study, agricultural drought vulnerability of 65 cities (as well as leagues and states) in the Yellow River basin was investigated using a fuzzy clustering iterative model and visualized by using GIS technique. The results showed clear differences and regularities among the spatial distribution of agricultural drought vulnerability of different regions. A large number of the regions in the basin consisted of those exhibiting high to very high vulnerability and were mainly distributed throughout Qinghai, Gansu, northern Shaanxi, and southern Shanxi, accounting for 46 % of the total assessment units. However, the regions exhibiting very high vulnerability were not significantly affected by droughts. Most of the regions exhibiting moderate vulnerability (21.5 % of the assessment units) were mainly concentrated among agricultural irrigation areas, where agriculture is highly sensitive to droughts, and drought occurrence in these regions will likely cause heavy losses in the future. The regions exhibiting slight to low vulnerability were relatively concentrated, accounting for 32.3 % of the assessment units, and were mainly distributed in the plains of the lower reaches of the Yellow River, where the economy was rather well developed and the agricultural production conditions were relatively stronger.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available