4.6 Article

A comparison of forest fire indices for predicting fire risk in contrasting climates in China

Journal

NATURAL HAZARDS
Volume 70, Issue 2, Pages 1339-1356

Publisher

SPRINGER
DOI: 10.1007/s11069-013-0877-6

Keywords

Forest fire; Fire danger indices; Fire risk probability; Semiparametric logistic regression

Funding

  1. National Basic Research Program of China [2010CB428404]

Ask authors/readers for more resources

The relationships between fire danger indices and fire risk have been extensively studied in many regions of the world. This work uses partial effect analysis in semiparametric logistic regression models to assess the nonlinear relationships among location, day, altitude, fire danger indices, normalized difference vegetation index (NDVI), and fire ignition from 1996 to 2008 in four different climatic regions in China. The four regions are North China (NR), Northeast China (NE), Southeast China (SE), and Southwest China (SW). The three main results are as follows: First, different fire danger indices are selected as significant variables dependent on the region. The inter-regional difference could be partially explained by difference in local weather and vegetation conditions. Second, spatial location exerts highly significant effects in all four regions. NDVI values are selected as explained variable for NR, NE, and SE on fire ignitions. On a daily scale, altitude influences fire ignition for NR, SE, and SW. Third, the robustness of the probability models used in NE, SE, and SW is better than that in NR on a daily scale. The semiparametric logistic regression model used in this study is useful for assessing the ability of fire danger indices to estimate probabilities of fire ignition on a daily scale. This study encourages further research on assessing the predictive ability of fire danger indices developed at other temporal and spatial scales in China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available