4.6 Article

The impact of extreme weather and climate change on inland waterway transport

Journal

NATURAL HAZARDS
Volume 72, Issue 1, Pages 23-40

Publisher

SPRINGER
DOI: 10.1007/s11069-012-0541-6

Keywords

Extreme weather events; Climate change; Inland waterway transport; Inland waterways

Funding

  1. European Union

Ask authors/readers for more resources

Similarly to other modes of transport, inland waterway transport has to deal with weather events, affecting navigation conditions and the infrastructure on inland waterways. Most significant extreme weather events result from high precipitation, droughts and temperatures below zero degrees Celsius. Heavy rainfall, in particular in association with snow melt, may lead to floods resulting in suspension of navigation and causing damage to the inland waterway infrastructure as well as the property and health of human beings living in areas exposed to flooding. Long periods of drought may lead to reduced discharge and low water levels, limiting the cargo-carrying capacity of vessels and increasing the specific costs of transportation. Temperatures below zero degrees Celsius over a longer period may cause the appearance of ice on waterways, leading to suspension of navigation and possible damage to infrastructure, for example, buoys. Neither extreme weather events as well as climate change are new phenomena nor is their general occurrence expected to change suddenly. However, due to climate change, extreme weather events may change positively or adversely in severity and frequency of occurrence, depending on the respective weather event and the location of its occurrence. This paper gives an overview of the impact of extreme weather events on inland waterway transport in Europe, focussed on the Rhine-Main-Danube corridor, followed by a discussion on how climate change will change these events and their impacts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available