4.6 Article

Rationale of genotoxicity testing of nanomaterials: Regulatory requirements and appropriateness of available OECD test guidelines

Journal

NANOTOXICOLOGY
Volume 4, Issue 4, Pages 409-413

Publisher

INFORMA HEALTHCARE
DOI: 10.3109/17435390.2010.485704

Keywords

Genotoxicity assays; Organisation for Economic Co-operation and Development (OECD); micronucleus assay; chromosomal aberrations; ultrafine titanium dioxide particles; amorphous silica particles; particle size; particle characterization

Ask authors/readers for more resources

The development of an environmental health and safety risk management system for nanoscale particle-types requires a base set of hazard data. Accurate determination of health and environmental risks of nanomaterials is a function of the integration of hazard and exposure datasets. Recently, a nanoparticle risk assessment strategy was promulgated and the components are described in a document entitled Nanorisk framework (www.nanoriskframework.com). A major component of the hazard evaluation includes a proposed minimum base set of toxicity studies. Included in the suggested studies were substantial particle characterization, a variety of acute hazard and environmental tests, concomitant with screening-type genotoxicity studies. The implementation of well-accepted genotoxicity assays for testing nanomaterials remains a controversial issue. This is because many of these genotoxicity tests were designed for screening general macroparticle chemicals and might not be suitable for the screening of nanomaterials (even of the same compositional material). Furthermore, no nanoparticle-type positive controls have been established or universally accepted for these tests. Although it is the comparative results of the test material vs. the negative or vehicle control that forms the basis for interpreting the results and potency of test materials in genetic toxicology assays, the lack of a nanoparticle-type positive control questions the suitability of the tests to identify nanomaterials with genotoxic properties. It is also not possible to establish historical positive control ranges that would confirm the sensitivity of the tests. Although several genetic toxicology tests have been validated for chemicals according to the Organisation for Economic Co-operation and Development (OECD) test guidelines, the relevance of these assays for nanoparticulate materials remains to be determined. In an attempt to remedy this issue, the OECD has established current projects designed to evaluate the relevance and reproducibility of safety hazard tests for representative nanomaterials, including genotoxicity assays (i.e., Steering Group 3 - Safety Testing of Representative Nanomaterials). In this article, we discuss our past approaches and experience in conducting genotoxicity assays (1) for a newly developed ultrafine TiO(2) particle-type; and (2) in a recent inhalation study, evaluating micronucleus formation in rat erythrocytes following exposures to engineered amorphous nanosilica particles. It seems clear that the development of standardized approaches will be necessary in order to determine whether exposures to specific nanoparticle-types are associated with genotoxic events. The appropriateness of available genotoxicity test systems for nanomaterials requires confirmation and standardization. Accordingly, it seems reasonable to conclude that any specific regulatory testing requirements for nanoparticles would be premature at this time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available