4.6 Article

Suppressing the excess OFF-state current of short-channel InAs nanowire field-effect transistors by nanoscale partial-gate

Journal

NANOTECHNOLOGY
Volume 29, Issue 41, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1361-6528/aad67c

Keywords

InAs nanowires; FET; band to band tunneling; short-channel effect

Funding

  1. MOST of China [2016YFA0200802]
  2. NSF of China [61621061, 61504133]

Ask authors/readers for more resources

The excess OFF-state current caused by band to band tunneling (BTBT) is a serious issue particularly in short-channel nanowire (NW) field-effect transistors (FETs), especially for narrow bandgap semiconductors such as InAs. Here, to clarify the components of the OFF-current and suppress the OFF-current, we for the first time fabricate and study InAs NW FETs with nanoscale partial-gate (PG). We fabricate a series of PGFETs and a normal full-gate (FG) FET on the same NW. Based on our results, the BTBT current component can reach tens of nanoamps in a typical 250 nm-channel InAs NW FGFET, and dominate the OFF-current. In contrast, there is almost no BTBT component in the PGFET, which provides a reference for other short-channel InAs NW FETs. Furthermore, the physical mechanism of the OFF-state carrier transport is discussed, and both electrons and holes currents are proven to be very important, based on our experimental results. Also, through statistic study, we find the BTBT effect can be more serious in the devices with better gate-control. Therefore, suppressing the BTBT effect is important to the future scaling-down.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available