4.6 Article

Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions

Journal

NANOTECHNOLOGY
Volume 25, Issue 39, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/25/39/395602

Keywords

graphene; acetylacetone; graphene oxide; adsorption

Funding

  1. National High-Tech R & D Program of China (863 program) [2011AA050504]
  2. National Natural Science Foundation of China [51102164, 61376003]
  3. Program for New Century Excellent Talents in University [NCET-12-0356]
  4. Shanghai Science and Technology Grant [12nm0503800]
  5. Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
  6. Instrumental Analysis Center of Shanghai Jiao Tong University

Ask authors/readers for more resources

The synthesis of graphene (GR) from graphene oxide (GO) typically involves harmful chemical reducing agents that are undesirable for most practical applications. Here we report a green and facile synthesis method for the synthesis of GR that is soluble in water and organic solvents and that includes the additional benefit of adsorption of heavy metal ions. Acetylacetone, as both a reducing agent and a stabilizer, was used to prepare soluble GR from GO. Transmission electron microscopy and atomic force microscopy provide clear evidence for the formation of few-layer GR. The results from Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy show that reduction of GO to GR has occurred. Raman spectroscopy and X-ray photoelectron spectroscopy also indicate the removal of oxygen-containing functional groups from GO, resulting in the formation of GR. The results of dispersion experiments show that GR can be highly dispersed in water and N, N-Dimethylformamide. The reaction mechanism for acetylacetone reduction of exfoliated GO was also proposed. This method is a facile and environmentally friendly approach to the synthesis of GR and opens up new possibilities for preparing GR and GR-based nanomaterials for large-scale applications. Of even greater interest is that inductively coupled plasma atomic emission spectroscopy suggests that synthesized GR may be applied in the absorption of Cd2+ and Co2+ due to the strong coordination capacity of acetylacetone on the surfaces and edges of GR and the large surface area of GR in aqueous solutions. The maximum adsorptions are 49.28mg g(-1) for Cd2+, which is 4.5 times higher than that of carbon nanotubes, and 27.78 mg g(-1) for Co2+, which is 3.6 times higher than that of titania beans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available