4.6 Article

Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si

Journal

NANOTECHNOLOGY
Volume 24, Issue 20, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/24/20/205402

Keywords

-

Ask authors/readers for more resources

A large thermoelectric power factor in heavily boron-doped p-type nanograined Si with grain sizes similar to 30 nm and grain boundary regions of similar to 2 nm is reported. The reported power factor is similar to 5 times higher than in bulk Si. It originates from the surprising observation that for a specific range of carrier concentrations, the electrical conductivity and Seebeck coefficient increase simultaneously. The two essential ingredients for this observation are nanocrystallinity and extremely high boron doping levels. This experimental finding is interpreted within a theoretical model that considers both electron and phonon transport within the semiclassical Boltzmann approach. It is shown that transport takes place through two phases so that high conductivity is achieved in the grains, and high Seebeck coefficient by the grain boundaries. This together with the drastic reduction in the thermal conductivity due to boundary scattering could lead to a significant increase of the figure of merit ZT. This is one of the rare observations of a simultaneous increase in the electrical conductivity and Seebeck coefficient, resulting in enhanced thermoelectric power factor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available