4.6 Article

Photochemical properties and shape evolution of CdSe QDs in a non-injection reaction

Journal

NANOTECHNOLOGY
Volume 24, Issue 14, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/24/14/145601

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF)
  2. Korean Government (MEST) [2012-00011]
  3. Gyeonggi-do
  4. KISTI
  5. National RD Program [2009-0082751]

Ask authors/readers for more resources

Highly monodispersed CdSe quantum dots (QDs) were prepared without an injection procedure. A series of Cd salts of long chain fatty acids, including Cd-myristate (C14), Cd-palmitate (C16) and Cd-stearate (C18) was prepared, and all metallic precursors and surfactants were mixed together followed by increasing the temperature in a controlled manner. The reaction resulted in highly monodisperse and bright zinc blende QDs. In addition, the effects of specific ligands which have been known to lead anisotropic growth of the nanocrystals in the injection method were investigated. The use of alkyl phosphonic acid and alkyl amine was found to produce extremely monodisperse CdSe QDs with a high quantum yield. This procedure was proven to be able to yield a large quantity of zinc blende CdSe QDs (2 g) in a one-pot reaction. The use of a controlled amount of tetradecylphosphonic acid and octadecylamine resulted in tetrapod-and match-shaped QDs, the first reported by a non-injection method. These results clearly demonstrate that appropriate combination of precursors can provide high quality of CdSe nanocrystals in terms of quantum yield, monodispersity and shape control by a non-injection method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available